Abstract

Kinetoplast DNA (kDNA), the mitochondrial DNA of flagellated protozoa of the order Kinetoplastida, is unique in its structure, function and mode of replication. It consists of few dozen maxicircles, encoding typical mitochondrial proteins and ribosomal RNA, and several thousands minicircles, encoding guide RNA molecules that function in the editing of maxicircles mRNA transcripts. kDNA minicircles and maxicircles in the parasitic species of the family Trypanosomatidae are topologically linked, forming a two dimensional fishnet-type DNA catenane. Studies of early branching free-living and parasitic species of the Bodonidae family revealed various other forms of this remarkable DNA structure and suggested the evolution of kDNA from unlinked DNA circles and covalently-linked concatamers into a giant topological catenane. The replication of kDNA occurs during nuclear S phase and includes the duplication of free detached minicircles and catenated maxicircle and the generation of two progeny kDNA networks that segregate upon cell division. Recent reports of sequence elements and specific proteins that regulate the periodic expression of replication proteins advanced our understanding of the mechanisms that regulate the temporal link between mitochondrial and nuclear DNA synthesis in trypanosomatids. Studies on kDNA replication enzymes and binding proteins revealed their remarkable organization in clusters at defined sites flanking the kDNA disk, in correlation with the progress in the cell cycle and the process of kDNA replication. In this review I describe the recent advances in the study of kDNA and discuss some of the major challenges in deciphering the structure, replication and segregation of this remarkable DNA structure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.