Abstract

It is shown that porous calcium phosphate ceramics can be produced from monetite and biogenic hydroxyapatite, the starting materials being in the ratios 25 : 75, 50 : 50, and 75 : 25 wt.%. It is established that phase transitions and solid-phase reactions take place during sintering to form polyphosphate ceramics consisting of hydroxyapatite (Ca5(PO4)3(OH)), β-pyrophosphate (β-Ca2P2O7), and β-tricalcium phosphate (β-Ca3(PO4)2), in which β-Ca2P2O7 and Ca5(PO4)3(OH) phases are predominant, depending on starting composition. When the biogenic hydroxyapatite content changes from 25 to 75 wt.%, the grain size decreases and the pore size increases. The ceramics have 40 to 42% porosity with predominant open porosity for all compositions. The ceramics show 32–55 MPa strength, which increases with the amount of biogenic hydroxyapatite in starting composition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.