Abstract

ABSTRACTThe effect of boron on the structure and macroscopic properties of an isolated grain boundary in bicrystals of a non-stoichiometric Ni3Al alloy (76 at% Ni, 23 at% Al, 1 at%Ta) has been studied. The room temperature tensile ductility and fracture mode of the bicrystals varies dramatically with the rate of cooling after elevated temperature heat treatment. In the absence of significant segregation of boron to the boundary, the bicrystals fail via brittle interfacial fracture with little or no ductility. When the segregation of boron to the boundary is maximized, the bicrystals are highly ductile. High resolution transmission electron microscopy reveals that this ductile state is achieved without the formation of a detectable region of compositional disorder at the boundary. Atomistic calculations using a Monte Carlo scheme predict that only partial disordering of the planes immediately adjacent to the boundary should occur for Ni-rich alloys both with and without boron. These results suggest that the presence of boron causes an increase in the cohesive energy of the boundaries rather than a change in the local compositional ordering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.