Abstract

Quadratic configuration interaction method including single and double substitutions has been used to optimize the possible structures of BeH2 and H2S molecules with the 6-311++g(3df,3pd) basis set. The results show that the ground state of BeH2 molecule is of D∞h symmetry and is in the X1Σ+g state, the ground state of H2S molecule is of C2v symmetry and in the X1A1 state. The equilibrium geometry, dissociation energy, harmonic frequencies and force constants have been calculated. The potential energy functions of BeH2 and H2S have been derived by using the many-body expansion theory. The potential energy functions describe correctly the configurations and the dissociation energies of the two ground-state molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.