Abstract
We lack a predictive understanding of the environmental drivers determining the structure and function of archaeal communities as well as the proteome associated with these important soil organisms. Here, we characterized the structure (by 16S rRNA gene sequencing) and function (by metaproteomics) of archaea from 32 soil samples across terrestrial ecosystems with contrasting climate and vegetation types. Our multi-“omics” approach unveiled that genes from Nitrosophaerales and Thermoplasmata dominated soils collected from four continents, and that archaea comprise 2.3 ± 0.3% of microbial proteins in these soils. Aridity positively correlated with the proportion of Nitrosophaerales genes and the number of archaeal proteins. The interaction of climate x vegetation shaped the functional profile of the archaeal community. Our study provides novel insights into the structure and function of soil archaea across climates, and highlights that these communities may be influenced by increasing global aridity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.