Abstract

The evolution of halos consisting of weakly self-interacting dark matter particles is investigated using a new numerical Monte Carlo N-body method. The halos initially contain kinematically cold, dense r-1 power-law cores. For interaction cross sections sigma*=sigmawsi&solm0;mp>/=10-100 cm2 g-1, weak self-interaction leads to the formation of isothermal, constant-density cores within a Hubble time as a result of heat transfer into the cold inner regions. This core structure is in good agreement with the observations of dark matter rotation curves in dwarf galaxies. The isothermal core radii and core densities are a function of the halo scale radii and scale masses which depend on the cosmological model. Adopting the currently popular LambdaCDM model, the predicted core radii and core densities are in good agreement with the observations. For large interaction cross sections, massive dark halos with scale radii rs>/=1.4x104 cm2 g-1 (sigma*)-1 kpc could experience core collapse during their lifetime, leading to cores with singular isothermal density profiles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.