Abstract

Ab initio studies carried out at the MP2(full)/6-311+G(2df) and MP2(full)/aug-cc-pVTZ-PP computational levels reveals that dinitrogen (N(2)) and cuprous halides (CuX, X = F, Cl, Br) form three types of systems with the side-on and end-on coordination of N(2): N[triple bond]N-CuX (C(infinity v)), N(2)-CuX (C(2v)) stabilized by the donor-acceptor bonds and weak van der Waals complexes N(2)...XCu (C(2v)) with dominant dispersive forces. An electron density transfer between the N(2) and CuX depends on type of the N(2) coordination and a comparison of the NPA charges yields the [N[triple bond]N](delta+)-[CuX](delta-) and [N(2)](delta-)-[CuX](delta+) formula. According to the NBO analysis, the Cu-N coordinate bonds are governed by predominant LP(N2)-->sigma*(Cu-X) "2e-delocalization" in the most stable N[triple bond]N-CuX systems, meanwhile back donation LP(Cu)-->pi*(N-N) prevails in less stable N(2)-CuX molecules. A topological analysis of the electron density (AIM) presents single BCP between the Cu and N nuclei in the N[triple bond]N-CuX, two BCPs corresponding to two donor-acceptor Cu-N bonds in the N(2)-CuX and single BCP between electron density maximum of the N[triple bond]N bond and halogen nucleus in the van der Waals complexes N(2)...XCu. In all systems values of the Laplacian nabla(2)rho(r)(r(BCP)) are positive and they decrease following a trend of the complex stability i.e. N[triple bond]N-CuX (C(infinity v)) > N(2)-CuX (C(2v)) > N(2)...XCu (C(2v)). A topological analysis of the electron localization function (ELF) reveals strongly ionic bond in isolated CuF and a contribution of covalent character in the Cu-Cl and Cu-Br bonds. The donor-acceptor bonds Cu-N are characterized by bonding disynaptic basins V(Cu,N) with attractors localized at positions corresponding to slightly distorted lone pairs V(N) in isolated N(2). In the N[triple bond]N-CuX systems, there were no creation of any new bonding attractors in regions where classically the donor-acceptor bonds are expected and there is no sign of typical covalent bond Cu-N with the bonding pair. Calculations carried out for the N[triple bond]N-CuX reveal small polarization of the electron density in the N[triple bond]N bond, which is reflected by the bond polarity index being in range of 0.14 (F) to 0.11 (Cl).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.