Abstract

The primary particle of ultra-high Ni cathodes is the direct carrier of Li+ ions (de)intercalation, which greatly affects in the electrochemical performance. It should be noted that the primary particle geometry is an important parameter of cathode. However, the relationship between primary particle size and structural stability remains the lack of understanding. Herein, we investigated the impact of primary particle geometries in different size systems including 336, 447 and 565 nm (secondary particle size: ∼14 μm). The results demonstrated that larger cathode’s primary particle size can effectively alleviate localized stress to inhibit intragranular/intergranular cracks, simultaneously, which can also restrain the growth of CEI film, and relieve the structure decay. Moreover, the regulated cathode with the primary (secondary) particle size of 675 nm (∼6 μm) has better structural stability, indicating the cathodes with the larger primary particles and smaller secondary particles is the development tendency in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.