Abstract

Mechanisms underlying Kv4 (Shal type) potassium channel macroscopic (open state) inactivation and recovery are unknown, as are mechanisms by which KChIP2 isoforms modulate these two processes. In a recent study (Xenopus oocytes, 2 microelectrode voltage clamp) we demonstrated that: i) Partial deletion of the Kv4.3 proximal N-terminal domain (Δ2-39; deletes N-terminal amino acids 2-39) not only slowed macroscopic inactivation, but also slowed the net rate of recovery; and ii) Co-expression of KChIP2b significantly accelerated the rate Δ2-39 recovery from inactivation. The latter effect demonstrated that an intact N-terminal domain was not obligatorily required for KChiP2b-mediated modulation of Kv4.3 recovery. To extend these prior observations, we have employed identical protocols to determine effects of KChiP2d on Δ2-39 macroscopic recovery. KChiP2d is a “structurally minimal” isoform (consisting of only the last 70 amino acids of the common C-terminal domain of larger KChIP2 isoforms) that exerts functional modulatory effects on native Kv4.3 channels. We demonstrate that KChiP2d also accelerates Δ2-39 recovery from macroscopic inactivation. Consistent with our prior Δ2-39 + KChIP2b study, these Δ2-39 + KChIP2d results: i) Further indicate that KChIP2 isoform-mediated acceleration of Kv4.3 macroscopic recovery is not obligatorily dependent upon an intact proximal N-terminal; and ii) Suggest that the last 70 amino acids of the common C-terminal of KChiP2 isoforms may contain the domain(s) responsible for modulation of recovery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.