Abstract

In the present work, we have studied the 2-hydroxy 2-methyl propiophenone (2H2MPP) theoretically as well as experimentally. The optimized molecular structure has been obtained by the density functional theory (DFT), second-order Moller–Plesset perturbation theory (MP2) and Hartree Fock (HF) in the gas phase as well as in different media like ethanol, DMSO and heptane. FT-IR and FT-Raman spectra were computed as well as recorded and fundamental vibrational wavenumbers were assigned. The electronic absorption spectra were calculated by employing the time-dependent density functional theory (TD-DFT) to get the information about excitation energies, oscillator strength and excited state geometries in gas phase and in different solvent media. Chemical activity and chemical stability obtained by HOMO-LUMO studies using a HF/6-31[Formula: see text]G and MP2/6-311[Formula: see text]G calculations. The chemical interpretation of hyperconjugation interactions obtained by the Natural Bond Orbital (NBO) analysis. Moreover, electrostatic potential (ESP) calculations performed to get the visual representation of relative polarity of molecule. Thermodynamic parameters like enthalpy, entropy, heat capacity, and Gibbs free energy computed with varying temperature from 10[Formula: see text]K to 500[Formula: see text]K. The aim of the current investigation is to find out the quantum chemical properties of the title compound which show an active role in the pharmaceutical and printing industries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call