Abstract

This work described the morphologic changes of corn stalk and the structural characterization of its hemicelluloses dissolved in yellow liquor at different cooking stages. The results showed that active oxygen cooking process was an efficient method to depolymerize the corn stalk into cellulose, hemicelluloses, and lignin as a pretreatment of biomass conversion. This cooking process can also be divided into three phases: bulk delignification, extended delignification, and residual delignification. During the heating-up period 57.67% of hemicelluloses and 62.31% of lignin were removed from the raw material. However, only 15% of hemicelluloses and 23.21% of lignin were removed during at temperature’ period. The hemicelluloses from the corn stalk and yellow liquor were composed of (1→4)-β-D-xylopyranose backbones substituted with α-l-arabinofuranosyl, 4-O-methyl-α-D-glucuronic acid, and some methoxyl residues. The backbones of hemicelluloses were gradually cleaved during the cooking process. The acetyl groups substituted with xylopyranosyl residues were completely cleaved during the cooking process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call