Abstract
The structural, elastic and thermodynamic properties of Mg2Si, Mg2Sn, CaMgSi and MgSnSr phases in Mg–Sn–Si–Ca(Sr) alloys have been investigated by implementing first-principles calculations. Formation enthalpies and cohesive energies show that MgSnSr has the strongest alloying ability and CaMgSi has the highest structural stability. The bulk modulus B, shear modulus G, Young’s modulus E, G/B, Poisson ratio [Formula: see text], anisotropy index A[Formula: see text] are estimated after evaluating the elastic constants. The mechanical properties are further analyzed and discussed. Finally, the Gibbs free energy and Debye temperature of these phases are calculated by means of the quasi-harmonic Debye model in temperature ranging from 0 K to 1000 K.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.