Abstract

Polypyridyl ruthenium complexes have been intensively studied and possess photophysical properties that are both interesting and useful. They can act as probes for DNA, with a substantial enhancement in emission when bound, and can induce DNA damage upon photoirradiation. Therefore, the synthesis and characterization of DNA binding of new complexes is an area of intense research activity. While knowledge of how the binding of derivatives compares to that of the parent compound is highly desirable, this information can be difficult to obtain. Here we report the synthesis of three new methylated complexes, [Ru(TAP)2(dppz-10-Me)]Cl2, [Ru(TAP)2(dppz-10,12-Me2)]Cl2, and [Ru(TAP)2(dppz-11-Me)]Cl2 (TAP = 1,4,5,8-tetraazaphenanthrene; dppz = dipyrido[3,2-a:2′,3′-c]phenazine), and examine the consequences for DNA binding through the use of atomic-resolution X-ray crystallography. We find that the methyl groups are located in discrete positions with a complete directional preference. This may help to explain the qu...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.