Abstract
As experimentally well established, undoped LaFeAsO is antiferromagnetic below 137K with the magnetic moments lying on the Fe sites. We determine the orthorhombic body-centered group Imma (74) as the space group of the experimentally observed magnetic structure in the undistorted lattice, i.e., in a lattice possessing no structural distortions in addition to the magnetostriction. We show that LaFeAsO possesses a partly filled "magnetic band" with Bloch functions that can be unitarily transformed into optimally localized Wannier functions adapted to the space group Imma. This finding is interpreted in the framework of a nonadiabatic extension of the Heisenberg model of magnetism, the nonadiabatic Heisenberg model. Within this model, however, the magnetic structure with the space group Imma is not stable but can be stabilized by a (slight) distortion of the crystal turning the space group Imma into the space group Pnn2 (34). This group-theoretical result is in accordance with the experimentally observed displacements of the Fe and O atoms in LaFeAsO as reported by Clarina de la Cruz et al. [nature 453, 899 (2008)].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.