Abstract
Adopting a network perspective, the structural connectome reveals the large-scale white matter connectivity of the human brain, yielding insights into cerebral organization otherwise inaccessible to researchers and clinicians. Connectomics has great potential for elucidating abnormal connectivity in congenital brain malformations, especially axonal pathfinding disorders. Agenesis of the corpus callosum (AgCC) is one of the most common brain malformations and can also be considered a prototypical genetic disorder of axonal guidance in humans. In this exploratory study, the structural connectome of AgCC is mapped and compared to that of the normal human brain. Multiple levels of granularity of the AgCC connectome are investigated, including summary network metrics, modularity analysis, and network consistency measures, with comparison to the normal structural connectome after simulated removal of all callosal connections ("virtual callostomy"). These investigations reveal four major findings. First, global connectivity is abnormally reduced in AgCC, but local connectivity is increased. Second, the network topology of AgCC is more variable than that of the normal human connectome, contradicting the predictions of the virtual callostomy model. Third, modularity analysis reveals that many of the tracts that comprise the structural core of the cerebral cortex have relatively weak connectivity in AgCC, especially the cingulate bundles bilaterally. Finally, virtual lesions of the Probst bundles in the AgCC connectome demonstrate that there is consistency across subjects in many of the connections generated by these ectopic white matter tracts, and that they are a mixture of cortical and subcortical fibers. These results go beyond prior diffusion tractography studies to provide a systems-level perspective on anomalous connectivity in AgCC. Furthermore, this work offers a proof of principle for the utility of the connectome framework in neurodevelopmental disorders.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.