Abstract
Human glycerol channel aquaporin 7 (AQP7) conducts glycerol release from adipocyte and enters the cells in pancreatic islets, muscles, and kidney tubules, and thus regulates glycerol metabolism in those tissues. Compared with other human aquaglyceroporins, AQP7 shows a less conserved “NPA” motif in the center cavity and a pair of aromatic residues at Ar/R selectivity filter. To understand the structural basis for the glycerol conductance, we crystallized the human AQP7 and determined the structure at 3.7 Å. A substrate binding pocket was found near the Ar/R filter where a glycerol molecule is bound and stabilized by R229. Glycerol uptake assay on human AQP7 as well as AQP3 and AQP10 demonstrated strong glycerol transportation activities at the physiological condition. The human AQP7 structure, in combination with the molecular dynamics simulation thereon, reveals a fully closed conformation with its permeation pathway strictly confined by the Ar/R filter at the exoplasmic side and the gate at the cytoplasmic side, and the binding of glycerol at the Ar/R filter plays a critical role in controlling the glycerol flux by driving the dislocation of the residues at narrowest parts of glycerol pathway in AQP7.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.