Abstract

Kainate receptors, which are glutamate activated excitatory neurotransmitter receptors, predominantly exist as heteromers of GluK2 and GluK5 subunits in the mammalian central nervous system. There are currently no structures of the full-length heteromeric kainate receptors. Here, we have used single molecule FRET to determine the specific arrangement of the GluK2 and GluK5 subunits within the dimer of dimers configuration in a full-length receptor. Additionally, we have also studied the dynamics and conformational heterogeneity of the amino-terminal and agonist-binding domain interfaces associated with the resting and desensitized states of the full-length heteromeric kainate receptor using FRET-based methods. The smFRET data are compared to similar experiments performed on the homomeric kainate receptor to provide insight into the differences in conformational dynamics that distinguish the two functionally.This article is part of a Special Issue entitled: Molecular biophysics of membranes and membrane proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.