Abstract

Strain analysis of the MOF and its composites using high-resolution X-ray diffractionmeter (XRD) was carried out and the presence of non-uniform, depth-related strain in the MOF crystals was confirmed. Further analysis showed that the magnitude and distribution of strain in MOF crystals can be tuned with the incorporation of nanoparticles (NPs). Moreover, the spatial controlled structures can also optimize functionalities of the NPs@MOF, which was exemplified by their applications on the catalytic reduction of nitroarenes. It is anticipated that the investigation of MOF structure evolution through controlling the architectures of the MOF/NPs hybrid materials will shed a light on the study of optimizing the mechanical and chemical properties of MOF composites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.