Abstract

The production of natural gas and natural gas liquids from unconventional tight shale formations involves hydraulic fracturing and subsequent removal of fluids co-produced with the gas. The chemistry of the returning fluid reflects the original composition of the injection water, mobilized constituents in the shale formation, and co-mingled formation waters liberated by hydraulic fracturing. Produced water from unconventional gas wells tapping the Middle Devonian Marcellus Formation is characterized by high total dissolved solids (TDS), including very high strontium concentrations. In this study, the strontium isotope composition (87Sr/86Sr) was measured in produced waters from four horizontally drilled, hydraulically fractured Marcellus shale gas wells in southwestern Pennsylvania, sampled from the first day after commencement of flowback to as much as 27 months later. The 87Sr/86Sr of the waters tended to change rapidly over the first few days of water return, and then approached (but did not reach) a constant range of values from 0.7113 to 0.7114, which appears to be characteristic of this part of the Marcellus play. In contrast, the concentration of Sr rose more slowly and appeared to hit a steady state value (up to 3000mg/L) by the end of the first year. Taken together with results from earlier work, these data suggest mixing between injected frac fluid and high-TDS formation water, highly enriched in Sr, and isotopically relatively uniform throughout the Marcellus shale gas play. This brine could exist within porous lenses of organic matter in the shale, in pre-existing fractures within the shale, and/or originate from fluids that migrated from adjacent formations at some point during the post-depositional history of the basin.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.