Abstract

Using Moriwaki's calculation of the ℚ-Picard group for the moduli space of curves, I prove the strong Franchetta Conjecture in all characteristics. That is, the canonical class generates the group of rational points on the Picard scheme for the generic curve of genus g ≥ 3. Similar results hold for generic pointed curves. Moreover, I show that Hilbert's Irreducibility Theorem implies that there are many other nonclosed points in the moduli space of curves with such properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.