Abstract

BackgroundThe nucleotide second messengers, i.e., guanosine tetraphosphate and pentaphosphate [collectively referred to as (p) ppGpp], trigger the stringent response under nutrient starvation conditions and play an essential role in virulence in the fire blight pathogen Erwinia amylovora. Here, we present transcriptomic analyses to uncover the overall effect of (p) ppGpp-mediated stringent response in E. amylovora in the hrp-inducing minimal medium (HMM).ResultsIn this study, we investigated the transcriptomic changes of the (p) ppGpp0 mutant under the type III secretion system (T3SS)-inducing condition using RNA-seq. A total of 1314 differentially expressed genes (DEGs) was uncovered, representing more than one third (36.8%) of all genes in the E. amylovora genome. Compared to the wild-type, the (p) ppGpp0 mutant showed down-regulation of genes involved in peptide ATP-binding cassette (ABC) transporters and virulence-related processes, including type III secretion system (T3SS), biofilm, and motility. Interestingly, in contrast to previous reports, the (p) ppGpp0 mutant showed up-regulation of amino acid biosynthesis genes, suggesting that it might be due to that these amino acid biosynthesis genes are indirectly regulated by (p) ppGpp in E. amylovora or represent specific culturing condition used. Furthermore, the (p) ppGpp0 mutant exhibited up-regulation of genes involved in translation, SOS response, DNA replication, chromosome segregation, as well as biosynthesis of nucleotide, fatty acid and lipid.ConclusionThese findings suggested that in HMM environment, E. amylovora might use (p) ppGpp as a signal to activate virulence gene expression, and simultaneously mediate the balance between virulence and survival by negatively regulating DNA replication, translation, cell division, as well as biosynthesis of nucleotide, amino acid, fatty acid, and lipid. Therefore, (p) ppGpp could be a promising target for developing novel control measures to fight against this devastating disease of apples and pears.

Highlights

  • The nucleotide second messengers, i.e., guanosine tetraphosphate and pentaphosphate [collectively referred to as (p) ppGpp], trigger the stringent response under nutrient starvation conditions and play an essential role in virulence in the fire blight pathogen Erwinia amylovora

  • 13,167,843 to 15, 637,863 reads for each biological sample were generated for E. amylovora wild-type strain (WT) and its (p) ppGpp0 mutant at 3 h, and the percentage of reads mapped to E. amylovora genome ranged from 97.1 to 97.8%; whereas 15,618,174 to 17,669,201 reads for each biological sample were obtained for E. amylovora WT at 6 h, and the percentage of reads mapped to E. amylovora genome were from 97.2 to 97.6%

  • The gene expression dynamics was first characterized by principal component analysis (PCA) for substantially expressed genes (Fig. 1)

Read more

Summary

Introduction

The nucleotide second messengers, i.e., guanosine tetraphosphate and pentaphosphate [collectively referred to as (p) ppGpp], trigger the stringent response under nutrient starvation conditions and play an essential role in virulence in the fire blight pathogen Erwinia amylovora. During the early stage of infection, plant pathogenic bacteria are exposed to environmental stresses, including nutrient starvation and oxidative stress To overcome these adverse conditions, bacteria produce linear nucleotide second messengers, i. E. guanosine tetraphosphate and pentaphosphate [collectively referred to as (p) ppGpp], to regulate gene expression from replication and growth to colonization and survival [1]. This phenomenon is socalled the stringent response, one of the global regulatory systems in bacteria [1]. It has been reported that the relA/spoT double mutant resulted in multiple defects, including autotrophies for several amino acids [5]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.