Abstract

The gastric pathogen Helicobacter pylori must adapt to fluctuating conditions in the harsh environment of the human stomach with the use of a minimal number of transcriptional regulators. We investigated whether H. pylori utilizes the stringent response, involving signaling through the alarmone (p)ppGpp, as a survival strategy during environmental stresses. We show that the H. pylori homologue of the bifunctional (p)ppGpp synthetase and hydrolase SpoT is responsible for all cellular (p)ppGpp production in response to starvation conditions. Furthermore, the H. pylori spoT gene complements the growth defect of Escherichia coli mutants lacking (p)ppGpp. An H. pylori spoT deletion mutant is impaired for stationary-phase survival and undergoes a premature transformation to a coccoid morphology. In addition, the spoT deletion mutant is unable to survive specific environmental stresses, including aerobic shock and acid exposure, which are likely to be encountered by this bacterium during infection and transmission.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.