Abstract
Abstract The stringent response is a form of bacterial response to adverse environmental conditions. Its effectors are guanosine tetraphosphate and guanosine pentaphosphate [(p)ppGpp], which are synthetized by RelA, SpoT and their homologs (RSH). RelA, a (p)ppGpp synthase, is activated when there is a shortage of amino acids, whereas SpoT, which has the ability to synthetize and hydrolyze (p)ppGpp, responds to fatty acids, iron and carbon limits. Accumulation of (p)ppGpp causes an inhibition of translation, replication, a decrease in the transcription of many genes, e.g. rRNA, tRNA, encoding ribosomal proteins, and an increase in the transcription of genes whose proteins are important in bacterial stress response. The stringent response alarmones are crucial for bacterial resistance to oxidative stress and antibiotics. They also regulate the production of specific molecules, the so-called quorum sensing autoinducers, which help bacteria communicate the density of their own population, which enables them to adjust their metabolism to the prevailing conditions, to form a biofilm – a community of microorganisms attached to a certain surface, ensuring them appropriate conditions to survive in an unfavourable environment, and to colonize new niches. (p)ppGpp has a positive impact on biofilm formation not only via the regulation of quorum sensing, but also by stimulating the synthesis of potential elements of the biofilm. It also appears that the stringent response alarmones decrease the ability of Agrobacterium tumefaciens bacteria to transform plants and thus their potential to cause disease. (p)ppGpp enables the bacteria to perform swarming motility, a movement that increases their resistance to adverse environmental factors. 1. Introduction. 2. RelA, SpoT and RSH proteins – enzymes that metabolize the alarmones of the stringent response. 2.1. The regulation of transcription via stringent response alarmones in Gram-negative bacteria. 2.2. The regulation of transcription via (p)ppGpp in Gram-positive bacteria. 2.3. The influence of stringent response alarmones on translation and replication. 3. The role of the stringent response in the regulation of other physiological processes. 3.1. The role of the stringent response in the production of siderophores and antibiotics. 4. Bacterial cell resistance to stress and the stringent response. 4.1. The participation of the stringent response in quorum sensing regulation. 4.2. The regulation of exopolysacharide production and biofilm formation dependent on the stringent response. 4.3. The role of the stringent response in the regulation of bacterial swarming motility. 5. Summary
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Postępy Mikrobiologii - Advancements of Microbiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.