Abstract

Tomato DWARF14 regulates the development of roots, shoot branches and leaves, and also plays a role in photosynthetic pigment accumulation and photosynthetic capacity. Strigolactones (SLs) are a novel class of plant hormones. DWARF14 (D14) is the only SL receptor identified to date, but it is not functionally analyzed in tomato (Solanum lycopersicum). In the present study, we identified the potential SL receptor in tomato by bioinformatic analysis, which was designated as SlD14. SlD14 was expressed in roots, stems, flowers and developing fruits, with the highest expression level in leaves. sld14 mutant plants produced by the CRISPR/Cas9 system displayed reduced plant height and root biomass, increased shoot branching and altered leaf shape comparing with WT plants. The cytokinin biosynthetic gene ISOPENTENYLTRANSFERASE 3 (SlIPT3), auxin biosynthetic genes FLOOZY (SlFZY) and TRYPTOPHAN AMINOTRANSFERASE RELATED 1 (SlTAR1) and several auxin transport genes SlPINs, which are involved in branch formation, showed higher expression levels in the sld14 plant stem. In addition, sld14 plants exhibited light-green leaves, reduced chlorophyll and carotenoid contents, abnormal chloroplast structure and reduced photosynthetic capacity. Transcriptomic analysis showed that the transcript levels of six chlorophyll biosynthetic genes, three carotenoid biosynthetic genes and numerous chlorophyll a/b-binding protein genes were decreased in sld14 plants. These results suggest that tomato SL receptor gene SlD14 not only regulates the development of roots, shoot branches and leaves, but also plays a role in regulating photosynthetic pigment accumulation and photosynthetic capacity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.