Abstract
Extracellular levels of dynorphin B were analysed with in vivo microdialysis in the neostriatum and substantia nigra of halothane-anaesthetized rats. Dopamine and its metabolites, 3,4-dihydroxyphenylacetic acid and homovanillic acid, as well as GABA were simultaneously monitored. Chromatographic analysis revealed that the dynorphin B-like immunoreactivity measured in perfusates collected under basal and K +-depolarizing conditions co-eluted with synthetic dynorphin B. Dynorphin B, GABA and dopamine levels were Ca 2+-dependently increased by K +-depolarization, while 3,4-dihy-droxyphenylacetic acid and homovanillic acid levels were decreased. Dopamine and its metabolites, but not dynorphin B or GABA levels, were significantly decreased after a unilateral 6-hydroxydopamine injection into the left medial forebrain bundle. In contrast, following a unilateral injection of ibotenic acid into the striatum, dynorphin B and GABA levels were decreased by > 50% in striatum and substantia nigra on the lesioned side, whereas no significant changes were observed in basal dopamine levels. The inclusion of the peptidase inhibitor captopril (50–500 μM) into the nigral perfusion medium produced a concentration-dependent increase in nigral extracellular levels of dynorphin B. In the striatum, a delayed increase in dynorphin B and GABA levels could be observed following the nigral captopril administration, but this effect was not concentration-dependent. Thus, we demonstrate that extracellular levels of dynorphin B, dopamine and GABA can simultaneously be monitored with in vivo microdialysis. Extracellular dynorphin B appears to originate from neurons, since the levels were (i) increased in a Ca 2+-dependent manner by K +-depolarization, and (ii) decreased by a selective lesion of the striatum, known to contain cell bodies of dynorphin neurons in the striatonigral pathway. Furthermore, (iii) the increase in nigral dynorphin B levels by peptidase inhibition suggests the presence of clearance mechanisms for the released dynorphin peptides.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.