Abstract
Let $S$ be a finite set of points in the Euclidean plane. Let $D$ be a Delaunay triangulation of $S$. The {\em stretch factor} (also known as {\em dilation} or {\em spanning ratio}) of $D$ is the maximum ratio, among all points $p$ and $q$ in $S$, of the shortest path distance from $p$ to $q$ in $D$ over the Euclidean distance $||pq||$. Proving a tight bound on the stretch factor of the Delaunay triangulation has been a long standing open problem in computational geometry. In this paper we prove that the stretch factor of the Delaunay triangulation of a set of points in the plane is less than $\rho = 1.998$, improving the previous best upper bound of 2.42 by Keil and Gutwin (1989). Our bound 1.998 is better than the current upper bound of 2.33 for the special case when the point set is in convex position by Cui, Kanj and Xia (2009). This upper bound breaks the barrier 2, which is significant because previously no family of plane graphs was known to have a stretch factor guaranteed to be less than 2 on any set of points.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.