Abstract

IntroductionA functional vascular barrier controlling leukocyte recruitment into the perivascular space relies on an intact endothelial glycocalyx (EGX). Critical disease states such as sepsis or trauma can induce massive shedding of EGX components into the blood stream. Previous studies have shown that high blood levels of EGX components are correlated with bleeding in patients. The mechanism behind that observation remains to be fully elucidated. Material and methodsThe EGX components syndecan-1 (S1), hyaluronic acid (HA) and heparan sulfate (HS) were added to blood samples of 10 healthy male volunteers separately in three distinct concentrations to mimic three severity levels of in vitro EGX shedding. We analyzed spiked blood samples for leukocyte derived reactive oxygen species (ROS) release as a measure for innate immune activation and evaluated the impact on coagulation using clinical standard coagulation tests (SCTs) as well as rotational thrombelastometry (ROTEM®). ResultsWhereas ROS formation by polymorphonuclear leukocytes (PMN) was unaltered by all three substances, high concentrations of HS showed prolonged aPTT and TT compared to controls and S1 or HA. Changes in ROTEM® were discrete and mostly within normal range of values but analyses showed a significant reduction of clot firmness and formation by all EGX components compared to controls. Furthermore, alterations by HA and HS were dose dependent. Only HS showed a heparin like effect supporting the findings of SCTs. ConclusionsAll EGX components interfere with clot formation and strength. HS mimics heparin effects in ROTEM® that confirm detectable alterations of standard coagulation tests.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.