Abstract

Recent advances in smart structures technology have lead to a resurgence of interest in piezoelectricity, and in particular, in the solution of fundamental boundary value problems. In this paper, we develop an analytic solution to the axisymmetric problem of an infinitely long, radially polarized, radially orthotropic piezoelectric hollow circular cylinder rotating about its axis at constant angular velocity. The cylinder is subjected to uniform internal pressure, or a constant potential difference between its inner and outer surfaces, or both. An analytic solution to the governing equilibrium equations (a coupled system of second-order ordinary differential equations) is obtained. On application of the boundary conditions, the problem is reduced to solving a system of linear algebraic equations. The stress distribution in the tube is obtained numerically for a specific piezoceramic of technological interest, namely PZT-4. For the special problem of a uniformly rotating solid cylinder with traction-free surface and zero applied electric charge, explicit closed-form solutions are obtained. It is shown that for certain piezoelectric solids, stress singularities at the origin can occur analogous to those occurring in the purely mechanical problem for radially orthotropic elastic materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call