Abstract

Some approximate solutions for predicting the stress intensity factor of a short crack penetrating an inclusion of arbitrary shape have been developed under mode I and mode II loading conditions. The derivation of the fundamental formula is based on the transformation toughening theory. The transformation strains in the inclusion are induced by the crack-tip field and remotely applied stresses, and approximately evaluated by the Eshelby equivalent inclusion theory. As validated by detailed finite element (FE) analyses, the developed solutions have good accuracy for different inclusion shape and for a wide range of modulus ratio between inclusion and matrix material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.