Abstract

Equilibrium equations and stability conditions for the simple deformable elastic body are derived by means of considering a minimum of the static energy principle. The energy is supposed to be sum of the volume (elastic) and the surface terms. The ability to change relative positions of different material particles is taken into account, and appropriate natural definitions of the first and second variations of the energy are introduced and calculated explicitly. Considering the case of negligible magnitude of the surface tension, we establish that an equilibrium state of a nonhydrostatically stressed simple elastic body (of any physically reasonable elastic energy potential and of any symmetry) possessing any small smooth part of free surface is always unstable with respect to relative transfer of the material particles along the surface. Surface tension suppresses the mentioned instability with respect to sufficiently short disturbances of the boundary surface and thus can probably provide local smoothness of the equilibrium shape of the crystal. We derive explicit formulas for critical wavelength for the simplest models of the internal and surface energies and for the simplest equilibrium configurations. We also formulate the simplest problem of mathematical physics, revealing peculiarities and difficulties of the problem of equilibrium shape of elastic crystals, and discuss possible manifestations of the above-mentioned instability in the problems of crystal growth, materials science, fracture, physical chemistry, and low-temperature physics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.