Abstract

High performance composite reinforced with unidirectional continuous fibers are used in applications requiring high stiffness, high strength and light weight. Because of the high stiffness of the reinforced continuous fiber, the longitudinal performance of such unidirectional composites is greatly enhanced, but their transverse performance is so weak. The nature of the fiber/matrix interface is one of the important factors which determine the unique properties of the fiber reinforced metal matrix composites (MMCs). So, the current study is focused on the fracture behavior of the interface. Both stress state of the interface and crack parameters of the perpendicular crack to the interface for unidirectional fiber reinforced metal matrix composites under the transverse loading are investigated by using elastic-plastic finite element analysis. Different fiber volume fractions (5~60%) and arrangement (square and hexagon) of fibers were studied numerically. The fiber/matrix interface was treated as multi thin layer with different material properties. The fiber is assumed as linear elastic SiC and the matrix is assumed as elastic-plastic Ti -15-3 Titanium alloy. The results show that the stress distributions of the multi thin layer model have much less changes compared with a single interface case. And the properties of the interfacial zone affect the stress distribution, crack behavior and mechanical behavior of the fiber reinforced metal matrix composite.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call