Abstract

Determination of subvisible particle (SVP) content in biopharmaceuticals is a prerequisite to ensure the quality of liquid biopharmaceutical products. Here, we present a comparison of the recently introduced holographic video microscopy (total holographic characterization, THC) with two orthogonal and well-established analytical technologies: micro flow imaging (MFI) and resonant mass measurement (RMM). The capabilities of the THC were investigated under conditions commonly applied in drug product development. Three different antibody products were used at different concentrations and formulations to cover a wide range of realistic use-cases. The comparison was particularly focused on protein aggregates to investigate the applicability of THC to this critical class of particles in drug product development. Protein concentrations up to 100 mg/ml were investigated covering a broad range of viscosity and refractive indices, both important parameters in particle detection. The comparison reveals that THC is highly sensitive to detect protein aggregates in a size range from 0.5 µm to 10 µm. THC shows a significant superiority to FI and RMM in detecting heterogenous protein aggregates which often appear as transparent and porous particles. Additionally, THC needs very small sample amount of about 30 µl and short measurement times, making it applicable for early development stages and high-throughput approaches. These results show that THC is a valuable supplement to the existing particle characterization method portfolio in drug product development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.