Abstract

The different modes of stem cell division are tightly regulated to balance growth and differentiation during organ development and homeostasis. However, the mechanisms controlling such events are not fully understood. We have developed markers that provide the single cell resolution necessary to identify the three modes of division occurring in a developing nervous system: self-expanding, self-renewing, and self-consuming. Characterizing these three modes of division during interneuron generation in the developing chick spinal cord, we demonstrated that they correlate to different levels of activity of the canonical bone morphogenetic protein effectors SMAD1/5. Functional in vivo experiments showed that the premature neuronal differentiation and changes in cell cycle parameters caused by SMAD1/5 inhibition were preceded by a reduction of self-expanding divisions in favor of self-consuming divisions. Conversely, SMAD1/5 gain of function promoted self-expanding divisions. Together, these results lead us to propose that the strength of SMAD1/5 activity dictates the mode of stem cell division during spinal interneuron generation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call