Abstract
AbstractWe consider extensions of Peano arithmetic suitable for doing some of nonstandard analysis, in which there is a predicate N(x) for an elementary initial segment, along with axiom schemes approximating ω1-saturation. We prove that such systems have the same proof-theoretic strength as their natural analogues in second order arithmetic. We close by presenting an even stronger extension of Peano arithmetic, which is equivalent to ZF for arithmetic statements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.