Abstract
1. When crystals of a metal are highly perfect, their elastic limit is low, plastic flow taking place when the applied shear stress is very small. The elastic limit reaches higher values as the perfect structure is progressively broken up by cold-work. A steady state is finally reached where further distortion of the metal does not increase the elastic limit. The stress at which a metal passes beyond the elastic limit and begins to yield is ill-defined, as in general the crystal begins to ‘creep’ appreciably near this point and the time element enters into the definition of the stress-strain curve. Nevertheless, there is a fairly well-defined stress beyond which a metal, which has been brought into a steady state by being saturated with cold-work, ceases to behave elastically and undergoes permanent deformation. An attempt is made in this paper to derive an expression for the ultimate elastic limit or yield stress of a cold-worked metal, in terms of its structure and elastic constants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Mathematical Proceedings of the Cambridge Philosophical Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.