Abstract
Previous work shows that a host's resident microbial community can provide resistance against an invading pathogen. However, this community is continuously changing over time due to adaptive mutations, and how these changes affect the invasion resistance of these communities remains poorly understood. To address this knowledge gap, we used an experimental evolution approach in synthetic communities of Escherichia coli and Salmonella Typhimurium to investigate how the invasion resistance of this community against a bacterium expressing a virulent phenotype, i.e., colicin secretion, changes over time. We show that evolved communities accumulate mutations in genes involved in carbon metabolism and motility, while simultaneously becoming less resistant to invasion. By investigating two-species competitions and generating a three-species competition model, we show that this outcome is dependent on the strength of interspecies interactions. Our study demonstrates how adaptive changes in microbial communities can make them more prone to the detrimental effects of an invading species.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.