Abstract

Recent technological and methodological advances have strongly increased the potential of electron paramagnetic resonance (EPR) and electron nuclear double resonance (ENDOR) techniques to characterize the structure and dynamics of metalloproteins. These developments include the introduction of powerful pulsed EPR/ENDOR methodologies and the development of spectrometers operating at very high microwave frequencies and high magnetic fields. This overview focuses on how valuable information about metalloprotein structure-function relations can be obtained using a combination of EPR and ENDOR techniques. After an overview of the historical development and a limited theoretical description of some of the key EPR and ENDOR techniques, their potential will be highlighted using selected examples of applications to iron-, nickel-, cobalt-, and copper-containing proteins. We will end with an outlook of future developments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.