Abstract

The formation and strength of dislocation junctions in FCC crystals have been calculated using an orientation-dependent line tension model. The structure of the different types of junctions existing in FCC metals in the absence of an applied stress is examined with particular emphasis on the Lomer–Cottrell lock, the Hirth lock and the glissile junction. We have determined the ‘yield surface’ in stress space corresponding to the dissolution of junctions. Although this model represents a huge simplification of the physics of dislocations, the comparison with more sophisticated models shows that it is able to satisfactorily reproduce both the structure of junctions as well as their response to an applied stress. Moreover, it is in qualitative agreement with available experimental data. It is claimed that this simple model can provide useful parameters related to junction strength in higher level models of single crystal plasticity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.