Abstract

Steady-state voltammograms for reduction of acids of various strengths in alcohols with excess supporting electrolyte and without any supporting electrolyte can be used to infer charge type and strength of the acid on the basis of the phenomenon of migration. For strong and moderately weak acids (K(a)/[Formula: see text] > 10(-)(3)) in alcohols, the ratio of steady-state transport-limited current to diffusion-limited current, corrected appropriately for ion-ion interactions, the presence of ionic impurities, and changes in viscosity, for hydrogen ion reduction without supporting electrolyte and with excess supporting electrolyte equals 2. For acetic acid, which is very weak (K(a)/[Formula: see text] < 10(-)(6)), the value of the steady-state transport-limited current is, under the experimental conditions applied here, independent of supporting electrolyte concentration. In the case of a homogeneous acid-base equilibrium, a novel analytical procedure yields diffusion coefficients of both hydrogen ion and undissociated weak acid molecules from the diffusional and migrational currents. Limiting currents obtained in alcohols with excess supporting electrolyte and without supporting electrolyte are compared by means of an extended formula that incorporates the ionic strength dependence of diffusion coefficients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.