Abstract

Due to the characteristics of light weight, high specific strength, high specific stiffness and multi-function, sandwich structure is widely used in automotive industry, aerospace, offshore platform, construction, wind power generation and other fields. In recent years, the preparation and properties of new high-performance sandwich structures are the frontier research topics in the field of materials engineering. The research on the preparation method and mechanical properties of the sandwich pipes is favored by researchers at home and abroad. This paper, the O-core metal sandwich pipes is taken as the research object. The material is 304 stainless steel. By designing the orthogonal experiment, the sandwich pipes with 3 core pipes and 4 core pipes is prepared by laser welding. The tensile test of the sandwich pipes was carried out by Z250SNS electronic universal testing machine. At the same time, the finite element model of the sandwich pipes was established by using ANSYS finite element analysis software, and the strength of the sandwich pipes was further numerically simulated. Results show that the curves of the simulation and experiment data are in good agreement. Besides, when compare with an empty pipe, the carrying capacity of the sandwich pipe during stretching is significantly improved. The number of cores has a visible effect on the strength of the sandwich structure pipe, and the elastic limit is approximately proportional to the number of cores. In this paper, the mechanical properties of O-core metal sandwich pipe are studied, and the research method is clarified, which provides a new idea for the future research of sandwich pipe.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call