Abstract

Uniaxial compressive stress-strain curves have been measured on a suite of 26 commercial grades of tungsten carbide cermets and three maraging steels of interest for use in high-pressure apparatus. Tests were conducted on cylindrical specimens with a length to diameter ratio of two. Load was applied to the specimens by tungsten carbide anvils padded by extrudable lead disks. Interference fit binding rings of maraging steel were pressed on to the ends of the specimens to inhibit premature corner fractures. Bonded resistance strain gages were used to measure both axial and tangential strains. Deformation was exremely uniform in the central, gauged portion of the specimens. Tests were conducted at a constant engineering strain rate of 1 × 10−5 S−l. The composition of the specimens was principally WC/Co with minor amounts of other carbides in some cases. The Co weight fraction ranged from 2 to 15%. Observed compressive strengths ranged from about 4 to just above 8 GPa. Axial strain amplitude at failure varied from ∼ 1.5% to ∼9%. Representative stress-strain curves and a ranking of the grades in terms of yield strength and strain at failure are presented. A power law strain hardening relation and the Ramberg-Osgood stress-strain equation were fit to the data. Fits were very good for both functions to axial strain amplitudes of about 2%. The failure of these established functions is accompanied by an abrupt change in the trend of volumetric strain consistent with the onset of substantial microcrack volume.Key wordsTungsten carbidestrengthrheologyhigh pressure design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.