Abstract

Phosphorylated cellulose can be an intrinsic flame retardant and a promising alternative for halogenated fire inhibitors. In this study, the mixture of di-ammonium hydrogen phosphate (DAP) and urea (U), containing phosphate and nitrogen groups, was applied to attain fire inhibitor properties. Functional groups of cellulose were grafted with phosphorous by keeping the constant molar ratio of 1/1.2/4.9 between anhydroglucose units of cellulose/DAP/U in different concentrations of bleached kraft pulp. Phosphorus concentrations were determined using the ICP hrOES method, and paper sheets were made using the Rapid Köthen apparatus. The tensile strength of phosphorylated cellulose increased twice compared with unmodified cellulose when the phosphorous concentration increased to 10,000 g/kg. An increase in the tensile index comes from the higher freeness of pulp and cross-linking of the phosphorous group between cellulose fibers. Remarkable fire retardancy effects were achieved in cellulose concentrations above 5 wt%. The raised phosphorous concentration above 10,000 g/kg due to the phosphorylation process caused the formation of a char layer on a cellulose surface and the nonflammable gas emission. That effect was indirectly confirmed by reducing the combustion temperature and HRR by 50 and 45%, respectively. Due to increasing phosphorus concentration in cellulose sheets, cellulose's fire and strength properties increased significantly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.