Abstract

To accurately estimate floods with hydrological models, the model parameters and the initial state variables must be known. Good estimations of parameters and initial state variables are required to enable the models to make accurate estimations. The Xinanjiang rainfall-runoff (RR) model has been widely used in humid and semi-humid regions in China. In this paper, we evaluate the sensitivity of the Xinanjiang RR model parameters and the correlation between the state variables and the output streamflow. In order to reduce the impact of streamflow data error, model structural error and parameter uncertainty, the Xinanjiang RR model is coupled with intelligent optimization algorithms and a data assimilation method to estimate the streamflow in the Luo River in China that was first considered as gauged, and then as ungauged for parameter calibration. Model parameters are estimated in batch using a particle swarm optimization algorithm and three variations of ensemble Kalman Filter data assimilation (the state variable assimilation, parameter assimilation and the dual assimilation at the same time) for the Luo River, and the ungauged basin. In this case, the model parameters are set equal to median values. The results show that when parameter values are determined by an optimization algorithm using 10years of data, the dual ensemble Kalman Filter notably improves the simulated results. When the parameters adopt the median, the state variable assimilation has little effect on the estimation results, but the parameter assimilation positively affects the simulated results. The dual ensemble Kalman Filter also notably improves the simulated results. The time scale of assimilation has little effect on simulation results for the dual assimilation, but it has a large effect on the state variable assimilation and the parameter assimilation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.