Abstract

The double auction is a widely applicable trading mechanism used to converge to competitive equilibrium in different markets from which multiple equilibriums and incomplete information may arise. Therefore, different learning models have been applied to facilitate bidding strategies for buyers and sellers in the market. However, due to the existence of problems in double auction markets such as individual bounded rationality and information incompleteness, it is still necessary to explore a more general learning model to depict the learning mechanism in double auction markets and predict the evolution processes of bidding strategies for both sides. Therefore, this paper aims at introducing the use of the experience-weighted attraction (EWA) model for double auction because it combines reinforcement learning with belief learning that then converts EWA in a suitable and interesting learning model for describing and improving individuals’ learning behavior. It can become an effective learning model for bidding strategies in the double auction. In addition to the use of the EWA for strategy evolution in the double auction, the impact of its different bidding strategy performance parameters will be also analyzed and compared with other learning models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.