Abstract

The ability to carry objects has been considered an important selective pressure favoring the evolution of bipedal locomotion in early hominins. Comparable behaviors by extant primates have been studied very little, as few primates habitually carry objects bipedally. However, wild bearded capuchins living at Fazenda Boa Vista spontaneously and habitually transport stone tools by walking bipedally, allowing us to examine the characteristics of bipedal locomotion during object transport by a generalized primate. In this pilot study, we investigated the mechanical aspects of position and velocity of the center of mass, trunk inclination, and forelimb postures, and the torque of the forces applied on each anatomical segment in wild bearded capuchin monkeys during the transport of objects, with particular attention to the tail and its role in balancing the body. Our results indicate that body mass strongly affects the posture of transport and that capuchins are able to carry heavy loads bipedally with a bent-hip-bent-knee posture, thanks to the "strategic" use of their extendable tail; in fact, without this anatomical structure, constituting only 5% of their body mass, they would be unable to transport the loads that they habitually carry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call