Abstract

Insulin Receptor Substrate (IRS), an intracellular molecule devoid of an intrinsic kinase activity, is activated upon binding to IR which thereby works as a scaffold, organizing all signaling complexes and initiating the signaling process downstream. The level of IRS proteins and their stability in the cell is mostly maintained through the phosphorylation status of their tyrosine and serine residues. IRS is positively regulated by phosphorylation of its Tyr residues whereas a Ser residue phosphorylation attenuates it, although there exist some exceptions as well. Other post-translational modifications like O-linked glycosylation, N-linked glycosylation and acetylation also play a prominent role in IRS regulation. Since the discovery of the Warburg effect, people have been curious to find out all possible signaling networks and molecules that could lead to cancer and no doubt, the insulin signaling pathway is identified as one such pathway, which is highly deregulated in cancers. Eminent studies reveal that IRS is a pertinent regulator of cancer and is highly overexpressed in the five most commonly occurring cancers namely- Prostate, Ovarian, Breast, Colon and Lung cancers. IRS1 and IRS2 family members are actively involved in the progression, invasion and metastasis of these cancers. Recently, less studied IRS4 has also emerged as a contributor in ovarian, breast, colorectal and lung cancer, but no such studies related to IRS4 are found in Prostate cancer. The involvement of other IRS family members in cancer is still undiscovered and so paves the way for further exploration. This review is a time-lapse study of IRSs in the context of cancer done over the past two decades and it highlights all the major discoveries made till date, in these cancers from the perspective of IRS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call