Abstract

Ecological indicators for monitoring strategies are expected to combine three major characteristics: ecological significance, statistical credibility, and cost-effectiveness. Strategies based on stranding networks rank highly in cost-effectiveness, but their ecological significance and statistical credibility are disputed. Our present goal is to improve the value of stranding data as population indicator as part of monitoring strategies by constructing the spatial and temporal null hypothesis for strandings. The null hypothesis is defined as: small cetacean distribution and mortality are uniform in space and constant in time. We used a drift model to map stranding probabilities and predict stranding patterns of cetacean carcasses under H0 across the North Sea, the Channel and the Bay of Biscay, for the period 1990–2009. As the most common cetacean occurring in this area, we chose the harbour porpoise Phocoena phocoena for our modelling. The difference between these strandings expected under H0 and observed strandings is defined as the stranding anomaly. It constituted the stranding data series corrected for drift conditions. Seasonal decomposition of stranding anomaly suggested that drift conditions did not explain observed seasonal variations of porpoise strandings. Long-term stranding anomalies increased first in the southern North Sea, the Channel and Bay of Biscay coasts, and finally the eastern North Sea. The hypothesis of changes in porpoise distribution was consistent with local visual surveys, mostly SCANS surveys (1994 and 2005). This new indicator could be applied to cetacean populations across the world and more widely to marine megafauna.

Highlights

  • Top predators have long been considered as conservation priorities [1,2,3,4]

  • By using the drift model MOTHY developed by MeteoFrance, the French meteorological agency, we propose to examine how harbour porpoise stranding should be distributed if variations were only due to drift conditions

  • These results suggested that dead harbour porpoise numbers increased since 1990 and were observed during the whole year

Read more

Summary

Introduction

Top predators have long been considered as conservation priorities [1,2,3,4]. The generally low resilience of these species results from their low fecundity and their position at the top of food webs and makes them more susceptible to many human-induced pressures (direct takes, competition with fisheries, by-catch, bioaccumulation of persistent contaminants). Several parameters can be measured to provide relevant information on cetacean population status: absolute abundance, relative abundance, distribution, demographic parameters and health status Most of these parameters (absolute and relative abundance and distribution) require extensive data to be collected at sea, generally at high costs. We built the null hypothesis (H0) of stranding records and made predictions of inter-alia long term stranding series and seasonal variations at various spatial scales across study area, against which observed stranding data, provided by six contiguous national stranding schemes (from north to south: UK, Denmark, Germany, The Netherlands, Belgium and France) can be statistically compared in a rigorous hypothesis testing procedure. For the first time in Europe, administrative boundaries were pulled down to work at cetacean population scale

Materials and Methods
Results
Findings
Discussion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call