Abstract
Accurate material properties of the brain and skull are needed to examine the biomechanics of head injury during highly dynamic loads such as blunt impact or blast. In this paper, a validated Finite Element Model (FEM) of a human head is used to study the biomechanics of the head in impact and blast leading to traumatic brain injuries (TBI). We simulate the head under various direction and velocity of impacts, as well as helmeted and un-helmeted head under blast waves. It is shown that the strain rates for the brain at impacts and blast scenarios are usually in the range of 36 to 241 s−1. The skull was found to experience a rate in the range of 14 to 182 s−1 under typical impact and blast cases. Results show for impact incidents the strain rates of brain and skull are approximately 1.9 and 0.7 times of the head acceleration. Also, this ratio of strain rate to head acceleration for the brain and skull was found to be 0.86 and 0.43 under blast loadings. These findings provide a good insight into measuring the brain tissue and cranial bone, and selecting material properties in advance for FEM of TBI.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.