Abstract

The strain induced martensite transformation in austenitic stainless steels is of considerable interest, because it results in materials with attractive combinations of strength and ductility. The present work examines the mechanical response for a variety of strain and temperature paths, and relates these to microstructural observations. New evidence of the detailed transformation sequence is presented, along with direct evidence of codeformation of the austenite and martensite. Using different deformation temperature sequences enables the transformation to be changed from one that is heterogeneous to one that propagates axially along the sample. The strain hardening that occurs due to combined plasticity and martensitic transformation results in high kinematic hardening that is revealed by microstructural observations here, and which are linked directly to the mechanical response of these materials described in Part II of the present work.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.