Abstract

The size and viscosity effects are noticeable at the micro-/nano scale. In the present work, the strain gradient viscoelastic solution of the mode-III crack in an infinite quasi-brittle advanced material is proposed based on the strain gradient viscoelasticity theory using the Wiener–Hopf method. The solutions to the gradient-dependent viscoelastic crack problem are obtained directly by using the correspondence principle between the strain gradient viscoelasticity and strain gradient elasticity in Maxwell’s standard linear solid model. In this model, the stress near the crack tip is time-dependent and size-dependent. Besides, the stress near the crack tip is more significant than that based on gradient elasticity theory. Compared with the elastic strain gradient effect, the viscous gradient effect makes the stress field at the crack tip harden. The location and the value of maximum stress change with time, which differs from the case in strain gradient elasticity theory. The time that the normalized stress takes to stabilize also changes with the distance from the crack tip. When the viscosity effect is neglected or time tends to infinity, the strain gradient viscoelasticity theory can be reduced to the classical strain gradient elasticity theory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.